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SUMMARY

Congenital heart defects (CHDs) develop through a complex interplay between genetic variants, 

epigenetic modifications and maternal environmental exposures. Genetic studies of CHDs have 

commonly tested single genetic variants for association with CHDs. Less attention has been given 

to complex gene-by-gene and gene-by-environment interactions. In this study, we applied a 

recently developed likelihood-ratio Mann-Whitney (LRMW) method to detect joint actions among 

maternal variants, fetal variants and maternal environmental exposures, allowing for high-order 

statistical interactions. All subjects are participants from the National Birth Defect Prevention 

Study, including 623 mother-offspring pairs with CHD-affected pregnancies and 875 mother-

offspring pairs with unaffected pregnancies. Each individual has 872 single nucleotide 

polymorphisms encoding for critical enzymes in the homocysteine, folate, and transsulfuration 

pathways. By using the LRMW method, three variants (fetal rs625879, maternal rs2169650 and 

maternal rs8177441) were identified with a joint association to CHD risk (nominal P-

value=1.13e-07). These 3 variants are located within gene BHMT2, GSTP1 and GPX3, 

respectively. Further examination indicated that maternal SNP rs2169650 may interact with both 

fetal SNP rs625879 and maternal SNP rs8177441. Our findings suggest that the risk of CHD may 

be influenced by both the intra-generational interaction within the maternal genome and the inter-

generational interaction between maternal and fetal genomes.
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INTRODUCTION

Congenital heart defects (CHDs) are the most prevalent and severe type of birth defects, 

occurring in approximately 1 of every 100 live births (Moller et al., 1993, Botto et al., 2001, 

Hoffman & Kaplan, 2002, Hoffman et al., 2004). A substantial portion of infants born with 

serious CHDs die in infancy, and many of those who survive may require repeated surgeries 

and lengthy hospitalizations (Cleves et al., 2003, Gilboa et al., 2010, Nembhard et al., 2001). 

CHDs are a major concern for pediatric morbidity and mortality, and there are currently few 

strategies for reducing the public health impact of these conditions (Jenkins et al., 2007).

The genetic susceptibility of CHDs has been recognized for decades (Hobbs et al., 2002). As 

demonstrated by twin studies, the concordance rates of CHD phenotypes were significantly 

higher among monozygotic twins (10.0%) than dizygotic twins (2.5%) (Berg et al., 1989). 

Animal studies have identified several biological pathways controlling the development of 

the fetal heart. For example, two transcription factors cytoplasma 1 (the nuclear factor of 

activated T-cells; NF-ATc) and Smad6 were suggested to be involved in the formation of 

cardiac valves (Galvin et al., 2000). Mice lacking NF-ATc exhibit fatal defects in valve 

formation and disruption of Smad6 leads to abnormally thickened valves (High & Epstein, 

2008). Meanwhile, maternal environmental exposures may have an effect modification on 

key developmental genes that shape cardiac development (Ashworth & Antipatis, 2001, 

Keen et al., 2003, Doolin et al., 2002). It is believed that more than 85% of CHDs result 

from complex interactions between genetic variants, epigenetic modifications and maternal 

environmental exposures (Botto & Correa, 2003).

To identify genetic and environmental factors that foster the development of CHDs, 

extensive candidate-gene-based and genome-wide association studies have been conducted 

(Hobbs et al., 2006, Goldmuntz et al., 2008, Hobbs et al., 2011, Wessels & Willems, 2010, 

Pediatric Cardiac Genomics et al., 2013, Zaidi et al., 2013). Multiple genes and genetic 

variants are associated with CHDs. However, most of these studies, including our own, have 

adopted a single-locus analysis strategy, by testing each single genetic variant individually. 

As discussed above and elsewhere, CHDs are usually caused by the interplay between 

multiple genetic variants and environmental factors. If a gene operates primarily through a 

complex mechanism involving multiple other genes, the effect may often be missed if one 

examines it in isolation, without allowing for its potential interactions with other genes 

(Cordell, 2009). Particularly for maternal and perinatal research, two types of gene-gene 

interactions are possible during pregnancy: intra-generational interaction within either 

maternal or fetal genes, and inter-generational interaction between maternal and fetal genes 

(Sinsheimer et al., 2010). Both maternal and fetal genes may interact with other genes within 

each individual genome, while the maternal and fetal genes may also interact across 

genomes, leading to either conflicting or beneficial environment for fetal growth, which may 
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influence the phenotypes of both mothers and babies (Haig, 2004). To our knowledge, only 

one intra-generational interaction between variants from maternal genes MTHFR and CBS 
has been reported for association with CHDs (Lupo et al., 2010). We and others have 

proposed to detect inter-generational interactions with a penalized logistic regression model, 

and applied it to the studies of CHDs (Li et al., 2010, Li et al., 2014b, Li et al., 2014a). 

However, those studies are limited to interactions between genes from the same genomic 

region. Further, all existing interaction studies have adopted a two-way interaction strategy, 

by testing the interaction effect between two genetic variants or interaction effect between 

one genetic variant and one environmental factor (Lupo et al., 2010, Li et al., 2014a, Li et 
al., 2014b, Tang et al., 2014, Tang et al., 2015). Although convenient and easy to interpret, 

such a strategy cannot consider higher order interactions (e.g., three-way interactions), or the 

complex gene-by-gene (GXG) and gene-by-environment (GXE) interactions between 

maternal variants, fetal variants and environmental exposures.

In reality, higher-order interactions (e.g., three-way interactions) could exist (Moore, 2003, 

Ritchie et al., 2001). By not limiting the search to two-way interactions, we may have a 

better chance of identifying potentially important GXG/GXE interactions, which may 

elucidate how maternal and fetal genetic variants interact with one another and interplay 

with environmental factors to cause CHDs. However, detecting high-order GXG/GXE 

interactions underlying complex human diseases have remained to be a major challenge in 

genetic studies (Cordell, 2009, Thomas, 2010). A main difficulty for the conventional 

regression-based methods, such as logistic regression model, is the specification of 

underlying disease models. By specifying a disease model, certain inheritance of disease 

risks is implicitly assumed. When such assumption is violated, the effect estimate could be 

biased and the type I errors be inflated. Further, the number of parameters to be specified in 

the model increases exponentially with the order of interaction being analyzed. It may 

become impractical to specify such a model for high dimensional data (Carlborg & Haley, 

2004, Peduzzi et al., 1996). To address these difficulties, non-parametric dimension-

reduction methods have gained popularity for GXG/GXE research in the past few years, 

especially for detecting high-order GXG/GXE interactions (Ritchie et al., 2001, Lou et al., 
2007, Lu et al., 2012, Li et al., 2011). These proposed methods have been widely applied to 

population-based studies of complex human diseases, such as breast cancer and drug 

addiction. It would be of great interest to extend these methods for detecting GXG/GXE 

interactions in maternal and prenatal research.

Our current study is motivated by this gap in the existing literature, aiming to detect joint 

actions among a large number of maternal variants, fetal variants and maternal 

environmental exposures, while allowing for high-order statistical interactions. The current 

study included 872 maternal SNPs, 872 fetal SNPs selected from 62 candidate genes, and 19 

maternal environmental exposures. We applied a recently developed likelihood-ratio Mann-

Whitney (LRMW) method to search for GXG/GXE combinations among a large number of 

genetic and environmental factors. Finally, we explore possible biological mechanisms with 

respect to the GXG/GXE combinations that jointly alter CHD risk.
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MATERIALS AND METHODS

Ethics statement

The study was approved by University of Arkansas for Medical Sciences’ Institutional 

Review Board and the National Birth Defects Prevention Study (NBDPS), with protocol 

oversight by the Centers for Disease Control and Prevention (CDC) and National Center on 

Birth Defects and Developmental Disabilities. All study subjects gave informed consent. For 

minors, informed consent was obtained from their legal guardian or themselves, if 

emancipated.

Study Population

All subjects were participants of the National Birth Defects Prevention Study, the largest 

population-based case control study conducted in the US of nonsyndromic birth defects, 

covering an annual birth population of 482,000, or 10 % of U.S. births. CHD cases were 

ascertained from birth defect registries in ten participating states that had similar inclusion 

criteria: Arkansas, California, Georgia, Iowa, Massachusetts, New Jersey, New York, North 

Carolina, Texas, and Utah. NBDPS began in 1996, and a detailed description of the study 

can be found elsewhere (Yoon et al., 2001, Rasmussen et al., 2002, Gallagher et al., 2011). 

In the current study, we included all available mother-offspring pairs with estimated dates of 

delivery between 1997 and 2010, which is based on the due date reported by the mother 

during interview. Case pairs were defined as those in which the child had at least one type of 

conotruncal heart defect or obstructive heart defect. Control pairs were defined as those in 

which the child had no structural birth defect. Control families were randomly selected from 

birth certificate and/or birth hospital records and thus represent a random sample from the 

general population (Yoon et al., 2001). For the current analyses, the study population 

comprised 1,498 mother-offspring pairs, including 623 case pairs and 875 control pairs. The 

maternal characteristics are summarized in Table 1. The cases and control families were 

balanced with respect to maternal age, race and ethnicity, maternal education, household 

income, folic acid intake, alcohol consumption, cigarette smoking and maternal obesity (all 

p-values>0.05).

Genotyping and Quality Control

Our research team commissioned a custom 1,536 SNP panel covering 62 genes in the 

homocysteine, folate, and transsulfuration pathways potentially related to the development 

of CHDs, using the Illumina® GoldenGate custom genotyping platform, as detailed 

elsewhere (Chowdhury et al., 2012). Laboratories that use NBDPS archival DNA samples 

must demonstrate their proficiency in genotyping techniques by passing an External Quality 

Assessment (EQA). The EQA for High-throughput genotyping platforms, such as the 

Illumina Golden Gate assay employed in this project, consists of genotyping of a single SNP 

in one externally supplied blood-buccal trio. Results from the laboratory must be concordant 

(99%) for paired blood-derived and buccal-derived DNA and between genomic and whole 

genome amplified DNA. In addition, inter-lab results must be concordant as well as 

concordance between pre-characterized DNA and third-party results. Negative controls must 

not yield results and genotypes of trios must be consistent with Mendelian inheritance. 
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Arkansas Center for Birth Defects Research and Prevention has consistently scored 100% on 

NBDPS EQA.

GenomeStudio, the software toolkit developed by Illumina, was used for the initial genotype 

calling. We found that the quality of genotype clustering varied substantially among SNPs, 

which we attribute to the in silico design of the custom SNP panel without the subsequent 

quality checks that would be applied to a standard commercial array. To ensure the data 

quality, we updated the genotype clustering by using SNPMClust, a bivariate Gaussian 

model-based genotype clustering and calling algorithm, which is available as an R package 

on the Comprehensive R Archive Network (CRAN).

After running SNPMClust, clustering and classification plots for all SNPs were visually 

inspected, leading to dropping a SNP from analysis or running SNPMClust under non-

default settings in some cases. To ensure high-quality genotypes, we applied stringent 

quality control measures and excluded SNPs with obviously poor clustering behavior, no-

call rates > 10%, Mendelian error rates > 5%, minor allele frequencies < 5%, or significant 

deviation from Hardy-Weinberg Equilibrium in at least one racial group (P-value < 10−4). 

After the quality assessment, the analytical data had 872 variants in total.

Statistical Methods

Recently, we and others have proposed a likelihood ratio Mann-Whitney (LRMW) method 

for detecting genetic variants and environmental factors that are jointly associated with 

disease phenotypes (Lu et al., 2012). The LRMW method searches for joint action among a 

large number of genetic variants, such as genome-wide data, and environmental factors. It 

extends the traditional univariate Mann-Whitney test to assess the joint association of 

multiple genetic variants and environmental factors simultaneously, while allowing for high-

order statistical interactions. We have demonstrated through simulations that the LRMW 

method has improved power over the conventional Mann-Whitney method when higher 

order interaction exists among loci. The application of the LRMW method also identified a 

four-locus interaction among SNPs for type II diabetes, which was replicated in an 

independent dataset (Lu et al., 2012). The method has been implemented in a C++ software 

package, referred to as genome-wide gene-gene interaction analyses (GWGGI) (Wei & Lu, 

2014). In this article, we extend the LRWM method in the context of mother-offspring pair 

data, aiming to detect the joint action among maternal variants, fetal variants and maternal 

environmental exposures. Following the same notation, we briefly describe our method 

below. The theoretical details can be found elsewhere (Lu et al., 2012).

Assuming that multiple SNPs and environmental factors may be jointly associated with the 

disease outcome, we expect all mother-offspring pairs can be partitioned into various groups 

based on their gene-by-gene and gene-by-environment (GXG/GXE) combinations, among 

which the likelihood of disease may not be all equal. Determining GXG/GXE groups on 

high-dimensional data could be statistically complicated and computationally intense, since 

a large number of GXG/GXE groups can be formed. To search for GXG/GXE groups that 

are most significantly associated with disease phenotype, we adopt a forward selection 

algorithm, which has shown promising performance in previous studies (Li et al., 2011, Lu 

et al., 2012, Lu & Elston, 2008). The algorithm starts with a null model by including all 
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mother-offspring pairs as one group, and then uses forward selection to introduce SNPs or 

environmental factors into the model to partition all mother-offspring pairs into various 

GXG/GXE groups. In the first step, all SNPs and environmental factors were examined one 

at a time, and the one factor with the maximum LRMW statistic described below was 

selected. For example, if a bi-allelic SNP with alleles denoted as A and a, is selected in the 

first step, all pairs can be partitioned into two groups in two possible ways, assuming either 

dominant or recessive inheritance, respectively:

1. G1={AA or Aa} and G2={aa} (carrying one copy of risk allele will increase disease 

risk)

2. G1={AA} and G2={Aa or aa} (carrying two copies of risk alleles will increase 

disease risk)

After that, an environmental factor with two levels (e.g. smoker vs non-smoker) can further 

partition all pairs into 4 groups (i.e. G1/smoker, G1/non-smoker, G2/smoker, and G2/non-

smoker). Or, a second SNP with alleles denoted as B and b can further partition all 

individuals into 4 groups in two possible ways:

1. G1/BB or Bb, G1/bb, G2/BB or Bb, G2/bb (Assuming a dominant inheritance of 

allele B)

2. G1/BB, G1/Bb or bb, G2/BB, G2/Bb or bb (Assuming a recessive inheritance of 

allele B)

Furthermore, because the first SNP and the second SNP may be a maternal SNP and a fetal 

SNP (or vice versa), respectively, the selected GXG/GXE groups may represent joint gene 

actions within maternal or fetal genomes or the joint gene actions between maternal and 

fetal genomes.

In practice, the SNPs and environmental factors are selected forwardly, forming GXG/GXE 

groups adaptively to maximize a LRMW statistic defined below. Suppose the selected SNPs 

and environmental factors can form R GXG/GXE groups, G1, G2,……GR, we first define a 

likelihood ratio (LR) for each risk group:

where D represents cases and D ̄ represents controls. The LRMW statistic can be defined as:

where  and  are the number of case-mother pairs carrying genotype Gi and the number 

of control-mother pairs carrying genotype Gj, respectively; and φ[.] is a kernel function to 

compare the LR risk score between two groups. A commonly used kernel function is
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which leads to a Mann-Whitney statistic comparing the difference in LR risk scores between 

cases and controls (Mann & Whitney, 1947, Wilcoxon, 1945). In our study, we model each 

mother-offspring pair as a unit, and build a LRWM statistic for case-mother and control-

mother pairs.

In order to avoid over-fitting of data, we conduct a 10-fold cross-validation, i.e., randomly 

dividing the study population into 10 subsets, to determine the most parsimonious statistical 

model based on GXG/GXE groups. The joint association is also evaluated by permutation 

testing, which randomly shuffles the phenotype and applies the same procedure, including 

forward selection of GXG/GXE groups and ten-fold cross-validation. An empirical p-value 

can be obtained by repeating the permutation a large number of times (e.g. 5,000 times).

RESULTS

We applied the LRMW method to our dataset, aiming to search for GXG/GXE combinations 

among 872 maternal SNPs, 872 fetal SNPs, and 4 maternal environmental exposures, 

including folic acid supplementation, alcohol drinking, smoking and obesity. These maternal 

lifestyle factors have been shown to be associated with CHD development (Hobbs et al., 
2011). For example, maternal intake of folic acid containing supplements may reduce the 

risk of CHDs (Shaw et al., 1995, van Beynum et al., 2010), while smoking, drinking and 

obesity may increase the risk (Jenkins et al., 2007, Malik et al., 2008, Stothard et al., 2009). 

After tenfold cross validation, LRMW identified a final model with 3 SNPs, which gave the 

maximum LRMW statistic, indicating a joint association among 3 SNPs. None of the 

environmental factors was selected into the final model. The 3 SNPs are fetal rs625879, 

maternal rs2169650 and maternal rs8177441, located within gene BHMT2, GSTP1 and 

GPX3, respectively.

Eight GXG groups were formed by the combination of three SNPs. The three SNPs and 

corresponding grouping strategies are summarized in Table 2. Three SNPs were identified 

through forward selection, and the corresponding GXG groups had an increasing area under 

the curve (AUC), consistent with an increasing ability to predict cardiac defects (i.e. from 

0.54, 0.58 to 0.60).

It is worthwhile to note that LRMW method is entirely non-parametric. It allows complex 

interactions without specifying any interaction model explicitly. Therefore, it is possible for 

the identified SNPs to have a joint action through either additive or interaction effects. In 

order to examine the underlying genetic mechanism, we looked into each SNP pair to 

identify patterns of risk for CHDs among the corresponding GXG groups. For each SNP 

pair, all mother-offspring pairs can be partitioned into 4 groups based on their GXG 

combinations. For example, fetal SNP rs625879 and maternal SNP rs2169650 together form 

four two-SNP genotypes: G1={fetal rs625879 = CC and maternal rs2169650 = GG}, 
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G2={fetal rs625879 = CC and maternal rs2169650 = AA or AG}, G3={fetal rs625879 = AA 
or AC and maternal rs2169650 = GG}, and G4={fetal rs625879 = AA or AC and maternal 

rs2169650 = AA or AG}. We found that the effect of fetal SNP rs625879 was modified 

differently by the genotypes of maternal SNP rs2169650 (see. Figure 1), indicating a 

potential interaction effect between the two SNPs. In particular, it should be noted that this 

interaction is “essential” and not completely removable by a monotonic transformation of 

the data (Wu et al., 2009). The examination of the other two SNP pairs also indicated an 

additive effect between fetal SNP rs625879 and maternal SNP rs8177441 (see Figure 2), and 

an interaction effect between maternal SNP rs2169650 and maternal SNP rs8177441 (see 

Figure 3).

The proposed LRMW method is non-parametric, and does not assume any mode of 

inherence of disease. However, for the same reason, it does not provide any estimation of 

effect sizes. In order to estimate the effect sizes among identified genotype groups, we fit a 

logistic regression model based on the observed patterns of disease risk. The final model 

included main effects of three SNPs, and two interaction effects: 1) between fetal SNP 

rs625879 and maternal SNP rs2169650; 2) between maternal SNP rs2169650 and maternal 

SNP rs8177441. The results are summarized in Table 3. The results showed that a mother-

offspring dyad had the highest risk of disease (OR=2.47; 95% C.I. [1.20, 5.08]), when 

genotype CC, AG or AA, and GG were observed for fetal rs625879, maternal rs2169650 and 

maternal rs8177441, respectively. The logistic regression attained a significant joint 

association for three SNPs (P-value=1.13e-07). It should also be noted that this is a nominal 

p-value without accounting for the selection of SNPs in LRMW method. Permutation test of 

LRMW with 5,000 replicates obtained an empirical p-value of 0.11, which did not reach the 

conventional 0.05 threshold. However, we think it may still suggest a potential significant 

association, considering the fact we had limited sample size (i.e. 1,498 samples) but a very 

high-dimensional search space (i.e. 1,748 genetic and environmental factors together and 

their high-order combinations).

DISCUSSION

Our study builds on previous hypotheses and studies demonstrating that the etiology of 

nonsyndromic CHDs is a process involving multiple genetic variants, both maternal and 

fetal, maternal environmental exposures as well as complex GXG and GXE interactions. 

Existing studies typically have examined each single genetic variant for its association with 

CHDs. Relatively few studies have been conducted to examine potential CHD-related GXG 

and GXE interactions. Our understanding of the complex GXG/GXE interaction underlying 

CHDs is still in its infancy, especially for high-order interactions. Further, detecting those 

GXG/GXE interaction is especially challenging in maternal and prenatal research, since 

both intra-generational interaction and inter-generational interactions may occur, and both 

maternal and fetal genes may further interact with maternal environmental exposures 

(Sinsheimer et al., 2010). Our current study is motivated by the limitations and challenge in 

existing studies, aiming to detect complex GXG/GXE interactions among maternal variants, 

fetal variants and maternal environmental exposures, with the consideration of possible high-

order interactions. Although, none of the environmental factors was identified to be 

significant in this study, to our knowledge, our finding is the first three-way interaction 
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among maternal and fetal variants, involving two types of interactions: an intra-generational 

interaction within maternal genome (i.e. maternal GSTP1 and GPX3) and an inter-

generational interaction between maternal and fetal genome (i.e. maternal GPX3 and fetal 

BHMT2). Findings from previous studies indicated that the interactions between maternal 

genes in the folate metabolic pathway may influence the risk of CHDs (Lupo et al., 2010), 

and interactions between maternal and fetal genes may also influence birth defects, such as 

neural tube defects (Lupo et al., 2014). The findings in our study are in line with previous 

findings, further suggesting that the interaction effects among maternal and fetal genes could 

be complex, and genes from homocysteine and transsulfuration may interact with one 

another to influence CHD development jointly. The current study also extends our previous 

investigation of maternal-fetal genotype interactions to variants from different genomic 

regions (Li et al., 2014b, Li et al., 2014a).

For comparison purpose, we also applied a conventional logistic regression model to the 

same dataset. Similar to our LRMW method, a forward selection strategy was used for 

logistic regression by minimizing Akaike Information Criteria (AIC). By using a logistic 

regression model, a total number of 358 SNPs were selected, forming a highly complex final 

model. It will require a large number of parameters to further investigate their interactions. 

In addition, it is less straightforward for interpretation.

In our study, we identified a joint action among three variants, fetal SNP rs625879, maternal 

SNPs rs216950 and rs8177441. It has been suggested that SNP rs625879 was associated 

with various complex diseases and birth defects, such as coeliac disease (Hozyasz et al., 
2012), endometriosis-associated infertility (Szczepanska et al., 2011) and orofacial clefts 

(Mostowska et al., 2010). Further, the three identified SNPs are located in gene BHMT2, 

GSTP1 and GPX3, respectively. Gene BHMT2, or betaine--homocysteine S-
methyltransferase 2, encodes one of two methyl transferases that can catalyze the transfer of 

the methyl group from betaine to homocysteine, which plays a crucial role in methylation 

reactions. Anomalies in homocysteine metabolism have been implicated in disorders ranging 

from vascular disease to birth defects, such as spina bifida and CHDs (Giusti et al., 2010, 

McGeachie et al., 2009, Weisberg et al., 2003, Shaw et al., 2009). Gene GSTP1, or 

glutathione S-transferase pi 1, belongs to a family of enzymes that play an important role in 

detoxification by catalyzing the conjugation of many hydrophobic and electrophilic 

compounds with reduced glutathione. GSTP1 proteins were suggested to function in 

xenobiotic metabolism and play a role in susceptibility to various diseases, such as 

esophageal squamous cell carcinoma and gastric cardia cancer (Zendehdel et al., 2009). 

Gene GPX3, or glutathione peroxidase 3 (plasma), belongs to the glutathione peroxidase 

family, which functions in the detoxification of hydrogen peroxide. GPX3 protects cells and 

enzymes from oxidative damage, by catalyzing the reduction of hydrogen peroxide, lipid 

peroxides and organic hydroperoxide. It was also suggested that decreased GPX3 activity 

may lead to inadequate nitric oxide (NO) levels, which disrupts platelet inhibitory 

mechanisms and increases arterial thrombosis (Kenet et al., 1999). GPX3 was also found to 

be associated with ischaemic stroke among children and young adults (Voetsch et al., 2007). 

While it is biologically plausible that those three identified genes may jointly alter the risk of 

CHDs, it is necessary for further studies to validate and replicate this finding.

Li et al. Page 9

Ann Hum Genet. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A few limitations should also be noted. First, the permutation test of LRMW method 

attained an empirical P-value of 0.11, which did not reach the commonly used 0.05 

threshold. We think this can be largely due to our limited sample size (i.e.1,498 samples) 

and high-dimensional search space (i.e. 1,748 genetic and environmental factors together 

with consideration of their high order combinations). However, NBDPS is the largest study 

ever conducted in the U.S., and we have included all the available samples collected to date. 

We expect power to increase as NBDPS moves further with more samples. Second, no 

environmental factors were identified in our study. One possible reason is that our LRMW 

method utilized a forward selection strategy, which search for GXG/GXE combinations 

forwardly. A major advantage is that the forward search is computational efficient and 

feasible for high dimensional data, such as genome-wide data. However, to detect an 

interaction effect between two factors, our method requires at least one of them to have a 

main effect. In our framework, a genetic variant or environmental factor without a main 

effect may only be introduced into the final model if it interacts with other factors having 

significant main effects (Lu et al., 2012). An interaction effect without any main effect of all 

factors will require exhaustive search among all factors, which may substantially increase 

the computational intensity and possibly reduce power (Li et al., 2011). We also expect 

“pure interaction” to be a rare scenario in disease etiology. Third, we have combined 

conotruncal heart defects (332 case-mother pairs) and obstructive heart defects (291 case-

mother pairs) as cases in our study. It is possible that disease heterogeneity may exist 

between two subtypes of CHDs. However, previous studies have demonstrated that various 

types of pediatric heart disease may share same causal genes. For example, cardiac 

transcription factor, NKX2.5, has been associated with a wide variety of cardiac phenotypes 

such as, atrial septal defect, atrioventricular block, double outlet right ventricle, tetralogy of 

fallot, and ventricular septal defect (Benson, 2010). Further, stratified analysis with each 

particular subtype will significantly reduce our sample size, limiting our power to detect 

interactions, especially for high-order interactions.
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Figure 1. 
Fetal SNP rs625879 and maternal SNP rs2169650 showed a possible interaction effect.
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Figure 2. 
Fetal SNP rs625879 and maternal SNP rs8177441 showed a possible additive effect.
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Figure 3. 
Maternal SNP rs2169650 and maternal SNP rs8177441 showed a possible interaction effect.
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Table 1

Maternal characteristics for 623 case families and 875 control families

Control (N=875) Case (N=623) P-value

Age at delivery, mean (SD) 27.7 (5.9) 28.2 (5.9) 0.10

Mother’s race 0.65

 African American 88 (10%) 53 (8.5%)

 Caucasian 620 (71%) 456 (73%)

 Hispanic 124 (14%) 81 (13%)

 Others 42 (4.8%) 32 (5.1%)

 Missing information 1 1

Mother’s education, N (%) 0.65

 <12 years 117 (13%) 72 (12%)

 High school degree 209 (24%) 162 (26%)

 1–3 years of college 244 (28%) 174 (28%)

 At least 4 years of college or Bachelor degree 305 (35%) 215 (35%)

 Missing information 0 0

Household income, N (%) 0.97

 Less than 10 Thousand 112 (14%) 84 (14%)

 10 to 30 Thousand 236 (29%) 167 (28%)

 30 to 50 Thousand 190 (23%) 142 (24%)

 More than 50 Thousand 285 (35%) 203 (34%)

 Missing information 52 27

Folic acid supplementation, N (%) 0.15

 Unexposed 372 (43%) 288 (46%)

 Exposed 503 (57%) 335 (54%)

 Missing information 0 0

Alcohol consumption, N (%) 0.62

 Unexposed 681 (78%) 479 (77%)

 Exposed 191 (22%) 143 (23%)

 Missing information 3 1

Cigarette smoking, N (%) 0.91

 Unexposed 720 (82%) 511 (82%)

 Exposed 154 (18%) 111 (18%)

 Missing information 1 1

Maternal Obesity, N (%) 0.23

 Non-Obese (BMI<30) 681(81%) 467 (77%)

 Obese (BMI>=30) 158 (19%) 138 (23%)

 Missing information 26 18
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